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Nanoscale interfaces (nanometers)
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A story of atomistic simulations + experiments

• Understanding of three pieces of fundamental physics
^ surface kinetics
^ geometrical shadowing
^ stacking fault

• Conceptual design by integrating the pieces of physics

• Atomistic simulations based on the design

• Experimental validation
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3D ES barrier - concept

There may be 3D effect in diffusion down steps??

APL 2002; NATURE 2002
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3D ES barrier - values

With surface diffusion barrier, l=80,000 nm
With conventional ES barrier, l=65,000 nm

With 3D ES barrier, l=200 nm

Finally, we got the order of magnitude right!
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Geometrical shadowing

K. Robbie and M. J. Brett
J. Vac. Sci. Technol. A 15 (1997)
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Stacking fault formation
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Design by integration
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Simple physics works.

Design by integration

Nano Lett 2005
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Closing the story: synergy of atomistic simulations & experiments

From physics understanding

To conceptual design by integration

To atomistic simulation

To Experimental validation
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Another fabrication example calling for more work

• Time scale (also) 

• Length scale
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Cu thin film (microns)
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Texture development can be unexpected.

APL 2003
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Challenge to atomistic simulations – multiple time scales

~ 1ps

Multiple time scales from 1ps to 10s

~ 1ns

~ 10s

~ 10s
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Necessary physics ingredients in a model

L>1 micron

Cale
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Textured nanorods and thin films

Courtesy of Wang-Lu @RPI

Handbook of Materials Modeling
Springer, 2005
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Modeling and simulations

• Why do we do simulations
^ “agree with experiments”
^ replace experiments
^ reveal mechanisms and augment experiments
^ design/discover

• What are the important ingredients
^ mathematics
^ algorithms
^ physics/chemistry 


